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Abstract Whereas the definition of the dipole moment

operator for any finite system, independent of its size, is

trivial, it is only within the last 1–2 decades that expres-

sions have been proposed (based on the independent par-

ticle approximation) for the equivalent operator of an

infinite and periodic system. Using a quasi-one-dimen-

sional system as an example, we show how different ver-

sions of these expressions can be derived and thereby

formulate, for the first time, a multi-determinant treatment

of the effect of electron correlation. Based on another

version, an MP2 correlation treatment is suggested that

relies entirely on already available procedures. In contrast

with what is often assumed, we demonstrate that the so-

called branch dependence of the dipole moment per unit of

an infinite periodic system is directly related to bulk

physical observables that depend on the terminations even

for samples of a size that is well above the thermodynamic

limit. In particular, the structural response to an electro-

static field is studied for a model system. It is shown how

the effect of the terminations on the converse piezoelectric

coefficient can be calculated and measured. In addition, we

demonstrate the viability of the finite field nuclear relaxa-

tion treatment for determining the vibrational contribution

to static (hyper)polarizabilities and dynamic non-linear

optical processes in periodic systems.

Keywords Dipole moment � Polarizability �
Chain compounds � Electrostatic fields

1 Introduction

All materials have finite spatial extensions. Nevertheless,

it is often a good approximation to assume that they are

infinite. The rationale behind this approximation is that

the samples are sufficiently large so that (1) the thermo-

dynamic limit is reached and (2) the effects due to the

surfaces are negligible. If, in addition, the inner part of

the system of interest consists of identical building

blocks, so that deviations from regularity occur only at

the surfaces, then the system can be treated as infinite and

periodic. For the finite system containing N units, we

may, in the thermodynamic limit, define the intensive

property per unit that corresponds to the extensive prop-

erty n(N) as

�n ¼ lim
N!1

nðNÞ
N
¼ lim

N!1

1

DN
nðN þ DNÞ � nðNÞ½ �: ð1Þ

�n may be calculated from Eq. 1 or directly from results for

the infinite, periodic system.

In the present contribution, we shall be interested in

the case that n is the dipole moment. The reasons for

studying the dipole moment are twofold. First, the

response of any system to electric fields can be quantified

through the dipole moment, which determines linear and
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non-linear optical properties, as well as piezoelectricity,

pyroelectricity, etc. Second, for the infinite periodic sys-

tem, the theoretical/mathematical treatment of the dipole

moment contains some special features that we want to

relate to the physical properties of the very large, but

finite, system.

For the sake of simplicity, the present paper will be

restricted to quasi-one-dimensional systems. This is in tune

with the pioneering work on such systems by Akira

Imamura in whose honor we make this presentation. For

quasi-one-dimensional systems, the surfaces of the system

are the terminations.

The chains under consideration will be oriented along

the z axis. From the standard definition of the dipole

moment, i.e., being an integral over the total charge density

times the position vector, the z component of the dipole

moment of a long, but finite, chain can be split into a

nuclear and an electronic part:

lz ¼
Z

zqtotðrÞdr ¼ ln � le; ð2Þ

corresponding to the division of the total charge density as

qtotðrÞ ¼ qnðrÞ þ qeðrÞ: ð3Þ

Within the Born–Oppenheimer approximation (which we

will use), qn will be a superposition of d functions at

the sites of the nuclei, whereas qe will be determined

quantum-mechanically either through a wavefunction-

based (e.g., Hartree–Fock) or through a density-based (e.g.,

Kohn–Sham) approach. By calculating lz as a function of

the number of units of the chain, lz(N), it is trivial to obtain

�lz: As we shall see, there will generally be a finite con-

tribution from the surfaces independent of the size of the

system.

Alternatively, one may attempt to calculate �lz directly

from properties of the infinite, periodic system. Equation 2

suggests that such an approach may be non-trivial: the

integrand is ill-behaved in the limit z! �1 and it is also

non-periodic. Indeed, it turns out that for the calculation of

�le one has to use a different approach as recognized, for

example, by Blount [1] in the early 1960s. However, it was

not until about twenty years ago that an intensive effort was

initiated leading to several different procedures for calcu-

lating the dipole moment of an infinite periodic system,

including both the permanent and induced contributions.

Of these, the Berry phase treatment (also known as the

modern theory of polarization; MTP) [2–6] and our own

time-dependent vector potential approach (VPA) [7–16]

have been the most fully developed. Despite their very

different appearance, the MTP and the VPA are closely

related. In fact, their equivalence in several aspects has

now been shown (see for example, [12, 17]).

In this paper, we review some of the more recent

developments with regard to the calculation of the

dipolar electric field response of infinite periodic systems

and the relationship between this response and that of a

real finite macroscopic system. Both electronic and

nuclear degrees of freedom will be considered as well as

linear and non-linear properties. Our approach will be

from a mixture of the MTP and VPA points of view. In

addition, a number of new results will be mixed in with

the review material.

In order to set the stage for making the connection

between infinite periodic and finite macroscopic systems

later on we begin, in the next section, with a brief

treatment of �lz for large, but finite, chains. Although

linear chains are used here and throughout, the principles

developed are general and apply equally well to 2D and

3D systems. In Sect. 3, we turn to infinite periodic

chains. The formal derivation of the single determinant

MTP expression for the dipole moment given previously

[10] is extended to include multi-determinant wave-

functions. In addition, wavefunction treatments of elec-

tron correlation within the framework of the VPA are

discussed. Then in Sect. 4, we consider the electronic

and nuclear response to an electrostatic field as deter-

mined by the dipole moment. The branch/phase depen-

dence of the crystal orbitals in an infinite periodic

treatment of a 1D chain is shown in Sect. 4 to be related

to the effects caused by termination of that chain. This

relationship is verified through model calculations based

on the VPA Schrödinger-type self-consistent-field equa-

tion, which can also be derived from a version of the

MTP treatment. Subsequently, in Sect. 5, we demonstrate

how piezoelectric coefficients as well as vibrational non-

linear optical properties—both static and dynamic—can

be obtained from the nuclear response to a static field.

Finally, our findings are discussed and summarized in

Sect. 6.

For the sake of completeness, we mention here that,

throughout this paper, we use atomic units so that, e.g., the

magnitude of the elementary charge is set equal to unity,

jej ¼ 1:

2 Long finite chain

A schematic representation of a long, but finite, 1D chain is

shown in Fig. 1a. It is useful to split this system into three

distinct spatial parts: a perfectly regular central region (C)

where the electrons do not feel the finite size of the system,

and two terminal regions (L and R). Using this spatial

separation, the z component of the dipole moment is

[13, 14]
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lz ¼
Z

L

qðrÞzdrþ
Z

C

qðrÞzdrþ
Z

R

qðrÞzdr

¼NClC þ zR

Z

R

qðrÞdrþ zL

Z

L

qðrÞdr

2
4

3
5

þ
Z

L

qðrÞðz� zLÞdrþ
Z

R

qðrÞðz� zRÞdr

2
4

3
5

¼NClC þ zR � zLð ÞQR þ
Z

L

qðrÞðz� zLÞdr

2
4

þ
Z

R

qðrÞðz� zRÞdr

3
5: ð4Þ

Here, lC is the z component of the dipole moment of a

central unit, NC is the number of units in C, and we will

assume that the entire system is neutral so that the total

charge in R, QR, is equal to -QL. Finally, zR and zL

describe the centers of nuclear charge in the R and

L regions, respectively. Per definition, the central units are

neutral.

The spatial separation of the long finite chains in Fig. 1

is achieved when the length is such that there is a well-

defined central region where the units are neutral andR
C qðrÞzdr equals NC lC. We add that lC is not unique and

that different definitions may lead to different values.

Below we shall give one definition. According to our

experience, it is not obvious at which size this thermody-

namic limit is reached but, in general, more delocalized

systems require greater chain lengths.

Increasing the length of the system by DN ¼ 1 unit

(i.e., passing from Fig. 1a to Fig. 1b) increases NC by 1

and zR - zL by an amount equal to the lattice constant of

the central region, a. From Eq. 1 we, then, obtain

�lz ¼ lC þ QR � a: ð5Þ

Clearly, this result cannot depend on the original

specification of the L, C, and R regions as long as C

satisfies the separability conditions. Nonetheless, lC and

the surface dipole can separately change as we now show

by comparing Fig. 1a and Fig. 1c. In doing so, it will be

assumed that the dipole moment can be calculated from

atomic charges. This is illustrative, though not rigorous,

because the electronic charge density cannot be strictly

localized to the atomic centers. For Fig. 1a, we have

lC ¼ qaza þ qbzb þ qczc; ð6Þ

where qi and zi are the atomic charge and z position

coordinate for the ith atom in one of the central units (see

figure caption for identification of atoms a, b, and c).

Passing to Fig. 1c, and keeping the origin (as defined by

atomic positions) unchanged we see that zb and zc are

unchanged whereas

za ! za þ a

QR ! QR � qa:
ð7Þ

Thus, the surface and unit cell contributions to the average

dipole moment change by equal and opposite amounts.

This means that the unit cell dipole moment by itself is not

a physical property.

According to Eq. 5, the dipole moment per unit depends

on the charge accumulated in the terminal regions which, at

first glance, can vary widely. There are, however, restric-

tions on the surface charges as Vanderbilt and King-Smith

[3] have shown. They write the electronic part of the dipole

moment in terms of localized orbitals wlp

le ¼
X

l

X
p

Z
jwlpðrÞj2zdr; ð8Þ

where wlp, the pth orbital localized on the lth unit, is

obtained by a unitary transformation of the occupied

canonical orbitals. Then, using the idempotency of the

density matrix, it is proved that the number of electrons

associated with the terminal regions must be integral.

This result has been coined ‘charge quantization’ [18]

and implies that QR in Eq. 5 can only change by integers

when introducing chemical modifications of the terminal

regions (for instance by adding donor and acceptor

groups).

Fig. 1 Different schematic representations of long or infinite periodic

chains. Filled circles, empty circles, and filled triangles represent

three different types of atoms referred to in the text as a, b, and c,
respectively. The shorter vertical lines separate different units. Cases

(a), (b), and (c) correspond to finite chains; the long vertical lines

separate left (L), central (C), and right (R) regions while the stars

indicate the terminations. Cases (a) and (b) show the same chain but

with two different lengths, whereas (a) and (c) differ in the way the

units are defined. Cases (d) and (e) represent infinite, periodic chains

that differ in the way the units are defined
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In a naı̈ve approach for an infinite periodic chain, one

would assume that the dipole moment per unit is simply

that of a single unit cell. Then, �lz would equal lC. From

the discussion in this section, this would make �lz for an

infinite periodic chain different from that of the long finite

chain, since the contribution from the charge at the ter-

minations is removed. Moreover, the dipole moment per

unit would depend on the choice of the unit cell as is

evident from Fig. 1d, e. Although this treatment is some-

times used (for a more detailed discussion, see e.g.,

[19–21]), it is not correct as we show in the next section.

3 Infinite periodic chain

For a finite system with N electrons, the (origin-dependent)

electronic part of the dipole moment is defined as

le ¼ W
XN

i¼1

zi

�����
�����W

* +
; ð9Þ

where W is the N-electron wavefunction. When the system

is treated as infinite and periodic, a different approach must

be used. For that case, the single-particle crystal orbitals

may be written as Bloch waves,

wjðk; rÞ ¼ eikzujðk; rÞ: ð10Þ

In a practical calculation, the infinite number of k points is

replaced by a finite set of K equidistant points that sample

the 1st Brillouin zone which corresponds to the interval

� � p
a ; p

a�: This gives a k spacing of

Dk ¼ 2p
Ka

; ð11Þ

where a is the unit cell length. We emphasize that the K

unit cells form a Born von Kármán zone and it is assumed

that every quantity has the periodicity of this zone. Given a

single determinant wavefunction composed of crystal

orbitals, the problem is to identify an operator whose

expectation value will yield the dipole moment per unit

cell.

3.1 MTP expressions for independent particles

First, we consider the case N = 1. In that instance, we seek

a one-electron operator Â that satisfies the following:

• The expectation value for the ground state can be

calculated as (cf. Eq. 9):

hwjÂjwi ¼ hwjf ðzÞjwi; ð12Þ

where f(z) possesses the periodicity of the Born von

Kármán zone.

• In the limit K !1 or, equivalently, Dk! 0

f ðzÞ ¼ a0 þ a1zþ a2z2 þ � � � ’ a0 þ a1z; ð13Þ

so that the expectation value of Eq. 12 becomes

hwjÂjwi ¼ hwjf ðzÞjwi ’ f ðhwjzjwiÞ; ð14Þ

or, by inverting Eq. 14,

hwjzjwi ¼ f�1ðhwjÂjwiÞ: ð15Þ

An operator that satisfies the above criteria has been

presented by Blount [1] and will be used here. Given that

an arbitrary w(r) can be expanded in terms of Bloch waves

as

wðrÞ ¼
X

k

X
j

wjðk; rÞfjðkÞ ¼
X

k

X
j

eikzujðk; rÞfjðkÞ;

ð16Þ

then, as Blount proposed, one may write

ẑwðrÞ ¼ ðiD̂00 � iD̂0ÞwðrÞ

�
X

k

X
j

ieikz o

ok
e�ikz fjðkÞwjðk; rÞ

� ��

�i
o

ok
fjðkÞwjðk; rÞ
� ��

: ð17Þ

That is to say, we may take the desired operator to be

Â ¼ iðD̂00 � D̂0Þ:
As mentioned above, in a practical calculation, only a

finite set of equidistant k points is used, or, equivalently,

Â has to have the periodicity of the Born von Kármán zone.

Therefore, the derivatives of any function g(k) with respect

to k have to be replaced by finite-difference approxima-

tions. Here, we consider three different possibilities,

g0ðkÞ ’ g0þðkÞ ¼
gðk þ DkÞ � gðkÞ

Dk

g0ðkÞ ’ g0�ðkÞ ¼
gðkÞ � gðk � DkÞ

Dk

g0ðkÞ ’ g00ðkÞ ¼
gðk þ DkÞ � gðk � DkÞ

2Dk
:

ð18Þ

The middle line of Eq. 18, for example, leads to the finite-

difference approximations for D̂0 and D̂00 :

D̂0�wðrÞ ¼
1

Dk

X
k

X
j

wjðk; rÞfjðkÞ
�

�wjðk � Dk; rÞfjðk � DkÞ
�

D̂00�wðrÞ ¼
1

Dk

X
k

X
j

eikz ujðk; rÞfjðkÞ
�

�ujðk � Dk; rÞfjðk � DkÞ
�
:

ð19Þ

For D̂0þ and D̂00þ, the corresponding expressions are the same

except that, within the square brackets, k is replaced by
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k þ Dk: For the third possibility in Eq. 18, we simply use

the average of the ? and - formulas. It is, then, fairly

straightforward to obtain the corresponding three

expressions for the matrix element of Eq. 12,

hwjð�iD̂0� þ iD̂00�Þjwi ¼ w
i

Dk
ð1� eiDkzÞ

����
����w

� �

¼ i

Dk
ð1� SþÞ

hwjð�iD̂0þ þ iD̂00þÞjwi ¼ w
i

Dk
ðe�iDkz � 1Þ

����
����w

� �

¼ i

Dk
ðS� � 1Þ

hwjð�iD̂00 þ iD̂000Þjwi ¼ w
sinðDkzÞ

Dk

����
����w

� �

¼ 1

2iDk
ðSþ � S�Þ;

ð20Þ

where we have introduced

S� ¼ hwje�iDkzjwi: ð21Þ

Finally, the approximation of Eq. 14 gives

hwjzjwi ’ �i

Dk
ln Sþ ’ 1

Dk
Im ln Sþ

hwjzjwi ’ i

Dk
ln S� ’ �1

Dk
Im ln S�

hwjzjwi ’ 1

Dk
Arcsin

1

2i
ðSþ � S�Þ

	 

:

ð22Þ

Next, we turn to the many-electron case using the single

determinant wavefunction

WiðrÞ ¼
1ffiffiffiffiffi
N!
p Â wi1

ðr1Þwi2
ðr2Þ � � �wiN

ðrNÞ
� �

ð23Þ

in which r ¼ ðr1; r2; . . .; rNÞ; Â is the antisymmetrizer, and

N is the number of electrons in the Born von Kármán zone.

If each single-particle wavefunction is expanded in Bloch

functions as in Eq. 16, then the expression for the operator

Ẑ ¼
XN

i¼1

ẑi ð24Þ

acting on WiðrÞ becomes

ẐWiðrÞ ¼ i exp i
XN

n¼1

knzn

 ! XN

n¼1

o

okn

 !

� exp �i
XN

n¼1

knzn

 !
WiðrÞ

" #

� i
XN

n¼1

o

okn

 !
WiðrÞ: ð25Þ

As in the single-electron case, we replace the k-derivatives

with finite-difference approximations and, after some

tedious but trivial manipulations, end up with expressions

that have the same form as in Eq. 20 except that Z replaces

z and detS� replaces S±. For example, the first line of

Eq. 20 becomes:

hWiðrÞjð�iD̂0� þ iD̂00�ÞjWiðrÞi

¼ WiðrÞ
i

Dk
1� eiDk�z� ����

����WiðrÞ
� �

¼ i

Dk
1� det Sþ
� �

: ð26Þ

Here

S�
� �

lm
¼ hwlðrÞje�iDkzjwmðrÞi: ð27Þ

Then, using the analog of Eq. 14 the dipole moment per

unit,

�l ¼ 1

K
hWijz1 þ z2 þ � � � þ zN jWii; ð28Þ

becomes

�lR ¼
a

2p
Im ln det Sþ ¼ � a

2p
Im ln det S� ð29Þ

which is the expression that Resta has suggested within the

MTP [4]. Alternatively, one may also consider

�l0 ¼
a

2p
Arcsin

1

2i
det Sþ � det S�
� �	 


: ð30Þ

Our numerical calculations [10] have shown, however, that

the latter expression converges slower as a function of

K than is the case for �lR:

When Bloch waves, Eq. 10, are used as the single-par-

ticle eigenfunctions the S� matrices have a particularly

simple structure (see Fig. 2),

Sj1j2ðk1; k2Þ
� �� ¼ hwj1

ðk1; rÞje�iDkzjwj2
ðk2; rÞi

¼ dk1;k2�Dkhuj1ðk1; rÞjuj2ðk2; rÞi: ð31Þ

Obviously, the S� matrices, which determine the dipole

moment per unit, are not diagonal in k.

Fig. 2 The structure of the S� matrices in a Bloch-function

representation
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In order to proceed further, we use the first-order Taylor

series expansion

ujðk � Dk; rÞ ’ ujðk; rÞ � Dk
o

ok
ujðk; rÞ; ð32Þ

which gives

wj1
ðk; rÞje�iDkzjwj2

ðk � Dk; rÞ
� �
’ dj1;j2 � Dk uj1ðk; rÞ

o

ok

����
����uj2ðk; rÞ

� �
ð33Þ

so that, to lowest order in Dk;

ln det S� ¼ ln
Y

k

Y
j

1� Dk ujðk; rÞ
o

ok

����
����ujðk; rÞ

� �� �" #

’ ln 1� Dk
X

k

X
j

ujðk; rÞ
o

ok

����
����ujðk; rÞ

� �" #

’ �Dk
X

k

X
j

ujðk; rÞ
o

ok

����
����ujðk; rÞ

� �
: ð34Þ

Then

�lR ¼
a

2p
Im ln det Sþ ¼ � a

2p
Im ln det S�

’ a

2p
Im Dk

X
k

X
j

ujðk; rÞ
o

ok

����
����ujðk; rÞ

� �" #

¼ i

K

X
k

X
j

ujðk; rÞ
o

ok

����
����ujðk; rÞ

� �
� �lKSV: ð35Þ

The last expression is the one that was proposed by King-

Smith and Vanderbilt within the MTP [2].

Within an LCAO approach, the single-particle wave-

functions are expanded in terms of Bloch waves formed

from atom-centered basis functions, i.e.,

wjðk; rÞ ¼
X

p

CpjðkÞvpðk; rÞ ð36Þ

where

vpðk; rÞ ¼
1ffiffiffiffi
K
p

X
m

eikamvpmðrÞ; ð37Þ

and vpm is the pth basis function of the mth unit. Then

�le ¼
i

K

X
j

X
k

ujðk; rÞj
o

ok
ujðk; rÞ

� �

¼ 1

K

X
j

X
m

X
k

eikma
X

pq

C	qjðkÞhvq0jz� majvpmiCpjðkÞ

þ i

K

X
j

X
m

X
k

eikma
X

pq

C	qjðkÞhvq0jvpmi
d

dk
CpjðkÞ

� �le;charge þ �le;current; ð38Þ

whereby �le is split into so-called charge and current

contributions. The former is the expectation value for a

function that resembles z but is piecewise linear with the

periodicity of the lattice. The two term expression in

Eq. 38 is the one that is used in the VPA, although it is

derived in a more succinct manner. Finally, we may add the

nuclear contribution, which modifies only the charge term,

to obtain

�l ¼ �lcharge þ �lcurrent: ð39Þ

As mentioned at the beginning of Sect. 2, the dipole

moment of one unit of the central region of a long, but

finite chain, lC, is not unique. One possibility is to identify

it with the �lcharge; obtained using a basis set for which

hvp1
jzjvp2

i vanishes when p1= p2. This corresponds to

calculating lC with the functions of only one unit cell. By

comparing with Eq. 5 one, then obtains

lC ¼ �lcharge

QR � a ¼ �lcurrent:
ð40Þ

By construction, the first identity holds, whereby the sec-

ond identity must hold. Numerical studies confirm these

relations.

3.2 Wavefunction treatment of electron correlation

Electron correlation can, of course, be incorporated within

a single-particle formulation by means of density func-

tional theory. On the other hand, from the wavefunction

point of view, we can also readily extend the MTP treat-

ment given above to include configuration interaction.

A multi-determinant wavefunction can be written in the

form

WðrÞ ¼
X

i

CiWiðrÞ; ð41Þ

where the individual Slater determinants are given in

Eq. 23. It is, then, straightforward to generalize Eq. 26.

The first line, for example, simply becomes

WðrÞ ð�iD̂0� þ iD̂00�Þ
���

���WðrÞ
D E

¼
X

i

CiWiðrÞ
i

Dk
1� eiDk�z� ����

����
X

i

CiWiðrÞ
* +

: ð42Þ

Using arguments similar to those in the previous sub-

section, we define

hWiðrÞje�iDk�zjWjðrÞi ¼ det S�
i;j

ð43Þ

with

S�
i;j

� �
lm
¼ hwil

ðrÞje�iDkzjwjm
ðrÞi: ð44Þ

Here, wil
is the lth spin-orbital of the ith Slater determinant.

Thus, Eq. 42 can be written as
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hWðrÞjð�iD̂0� þ iD̂00�ÞjWðrÞi

¼ WðrÞ i

Dk
1� eiDk�z� ����

����WðrÞ
� �

¼ i

Dk
1�

X
i;j

C	i Cj det Sþ
i;j

h i( )
: ð45Þ

This is the generalization of the single determinant case (cf.

Eq. 26). Using an approximation analogous to that of

Eq. 14, we arrive at the generalization of Eq. 29,

�lR ¼
a

2p
Im ln

X
i;j

C	i Cj det Sþ
i;j

h i( )

¼ � a

2p
Im ln

X
i;j

C	i Cj det S�
i;j

h i( )
: ð46Þ

Finally, by applying a Taylor expansion as in Eq. 32, and

keeping only the terms to lowest order in Dk; we obtain

after some manipulation

�lKSV ¼
i

K

X
i

C	i Ci

X
k

X
j

uijðk; rÞ
o

ok

����
����uijðk; rÞ

� �"

þ
X

i;j

0 C	i Cj ui0ðk; rÞ
o

ok

����
����uj0ðk; rÞ

� �#
: ð47Þ

In the second summation of Eq. 47, only Slater determi-

nants differing in exactly one spin-orbital (as specified by

i0 and j0) are included.

One could develop a corresponding time-dependent

configuration interaction treatment within the VPA. How-

ever, the most obvious way to approach the electron cor-

relation problem using wavefunctions is by means of the

time-dependent many-body perturbation theory/coupled

cluster approach. In principle, the time-dependent Møller–

Plesset second-order perturbation treatment (TD-MP2) of

Hattig and Hess [22] may be utilized, for example, together

with local-MP2 for periodic systems [23]. Both procedures

have been separately implemented and their combination

should be reasonably straightforward. Thinking further

ahead one could go on to consider the CC2 method as well

as coupled cluster doubles (CCD) and/or singles and dou-

bles (CCSD).

4 Branch dependence and structural response

to an electrostatic field

Using the �lKSV expression for the dipole moment and the

fact that the unit cells of the infinite, periodic system are

neutral, it can be demonstrated that two different choices of

the unit cell, like those of Fig. 1d, e, cannot change the

dipole moment per unit. Since the unit cells are neutral, this

finding is independent of the choice of the origin (provided,

again, it is defined with respect to atomic positions) in the

two cases. On the other hand, the assumption above that the

two different choices lead to identical single-particle

orbitals (including band- and k-dependent phase factors),

may or may not be fulfilled. For reasons to be discussed in

the paragraphs immediately below, we may, in fact, obtain

two different values for the electronic part of the dipole

moment per unit. These values can, however, differ only by

a lattice vector.

As implied above, there is an ambiguity in the value of

�lR calculated from Eq. 29. According to this expression,

the dipole moment per unit is written as a constant times

the imaginary part of the natural logarithm of a complex

number. Writing the complex number as an amplitude

times a phase factor, the imaginary part of the natural

logarithm is simply the phase. The phase, however, is given

only up to an integer times 2p, whereby the dipole moment

per unit contains an unknown integral multiple of the lat-

tice constant, ~n � a: In the VPA, this phase is related to the

phases of the crystal orbitals. Values of �lz that differ by

~n � a are said to belong to different branches, and it is

often assumed to be impossible to fix the branch uniquely

(i.e., to identify the ‘missing integer’ ~n). In that event, one

can only determine changes in �lz under some process

during which it is assumed that the branch does not change

(see e.g., [6]).

On the other hand, any finite system, no matter how

large it may be, will have a unique value of �lz as shown in

Sect. 2. Modifying such a system through terminal sub-

stitutions may change the charge at the terminations and

thereby �lz: However, the former can change only by an

integral number of electrons and the latter only by the same

integer times the lattice constant. The question that natu-

rally arises, then, is whether there is a connection between

the missing integer associated with different branches in

periodic calculations and the integer associated with the

surface charge in calculations on long finite chains. This

can be studied by monitoring the structural response (and

related properties) to an applied electrostatic field. That is

to say, the effect on the structure obtained with different

chain terminations can be compared with periodic chain

results for which the missing integer is given different

values.

4.1 Formalism

For the purpose of checking formalism and computational

approaches, models can provide excellent test systems.

They are especially useful in this case because of the need

for comparison of the infinite periodic system with corre-

sponding large finite systems. The latter have to be large
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enough that a central region can be defined. Furthermore,

model studies may provide useful, general understanding.

In that spirit, we present a new study, based on our pre-

vious model that not only corroborates our earlier results

[15] but allows us, in Sect. 5, to demonstrate the feasibility

of determining properties not previously obtained for a

nanomaterial.

We begin with a discussion of the formal theory. For

any finite system, describing the interaction with an elec-

trostatic field by means of the scalar potential, changes the

Hamiltonian operator according to

Ĥ ! Ĥ � lzE; ð48Þ

where we have assumed that the field E is along the chain

(z) axis. Upon inclusion of the electrostatic field, the single-

particle [Hartree–Fock (HF) or Kohn–Sham (KS)] equation

contains an extra electronic term, -z E, that is easily

treated (at a given geometry the nuclear term is simply an

additive constant). Of course, in doing so, one must take

into account the fact that the Hamiltonian is a function of

the density matrix (or density) which, in turn, depends

upon the field.

The situation is different for the infinite, periodic sys-

tem. Within the single-particle formulation, the operator

for the dipole moment per unit is one of several choices

determined by the several choices for the expectation value

that we gave in Sect. 3.1. It turns out to be most convenient

to use �lKSV of Eq. 35. In fact, this same expression is

exactly the one that appears in the basic Schrödinger-like

VPA equation [8, 9], i.e.,

X
p

FqpðkÞ � E MqpðkÞ þ iSqpðkÞ
o

ok

	 
� �
CjpðkÞ

¼ �jðkÞ
X

p

SqpðkÞCjpðkÞ; ð49Þ

where

SqpðkÞ ¼
X

l

eikalhvq0jvpli

FqpðkÞ ¼
X

l

eikalhvq0jF̂jvpli

MqpðkÞ ¼
X

l

eikalhvq0jz� lajvpli ¼
X

l

e�ikalhvqljzjvp0i

ð50Þ

are the overlap matrix, the Fock (or analogous Kohn–

Sham) matrix, and the sawtooth (or charge) contribution to

the dipole matrix, respectively. Of course, the Fock matrix

depends implicitly on E through the density and/or density

matrix.

Solving Eq. 49, particularly for a finite field, is non-

trivial. It is not a standard eigenvalue problem due to the

presence of the derivative with respect to k. Moreover,

since the expansion coefficients Cjp(k) may contain k and

j (=band-) dependent phase factors that are essentially

random, their derivatives with respect to k are numerically

ill-behaved. In order to solve these problems, we have

developed an efficient and numerically stable phase-

smoothing procedure whose details will not be discussed

here [12]. We have also demonstrated how the optimized

field-dependent structure can be calculated using analytical

derivatives [12]. These analytical derivatives were used in

the calculations to be reported below.

4.2 Model

Our model is a linear chain with alternating atoms (denoted

A and B) and alternating bond lengths. For the infinite,

periodic system, the structure is described through the

lattice constant, a, and a parameter u0 that quantifies the

alternating bond lengths a/2 - 2u0 and a/2 ? 2u0. For the

infinite periodic chain in the absence of the electrostatic

field, the two structures differing in the sign of u0 are

energetically degenerate. We shall here study only the case

that u0 [ 0. This corresponds to choosing the unit cell so

that the shorter interatomic bonds are between atoms of the

same unit cell and the longer ones are between atoms of

neighboring unit cells.

There are 4 electrons per repeat unit and nuclear charges

of 2jej on each atom. We use an HF-like approximation

with a basis set that consists of a pair of orthonormal

functions centered on each atom. In order to calculate

various matrix elements analytically, the mathematical

expressions for one of the two basis functions at the atom X

(placed at z0) is defined as vX;1ðzÞ ¼ 1ffiffiffiffiffiffiffi
wX;1
p for jz�

z0j 
 wX;1

2
; and zero elsewhere; the other function is defined

as vX;2ðzÞ ¼ 1ffiffiffiffiffiffiffi
wX;2
p for

wX;2

4

 jz� z0j 
 wX;2

2
; �1ffiffiffiffiffiffiffi

wX;2
p for jz�

z0j 
 wX;2

4
; and zero elsewhere. The widths, w (obeying

wX, 1 [ wX, 2), were kept sufficiently small so that func-

tions on non-neighboring atoms do not overlap.

We write the field-free N-electron Hamiltonian as a sum

of one- and two-electron operators,

Ĥ ¼
XN

n¼1

ĥ0ðnÞ þ
1

2

XN

n1 6¼n2¼1

v̂ðn1; n2Þ: ð51Þ

The one-electron matrix element hvqmjĥ0jvpli is assumed to

be non-zero only for (q, m) = (p, l) (in which case it is a

constant that depends only on the type of atom and on the

basis function) and for the two atoms at which the two

basis functions are centered being nearest neighbors (in

which case it depends linearly on the interatomic distance).

Here, the second index (i.e. l or m) refers to the unit cell

and the first index refers to the basis function. Of the two-

electron matrix elements, only hvqlvqljv̂jvqlvqli is assumed
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to be non-zero. Moreover, hvqmjzjvpli ¼ dm;ldq;pzqm; where

zqm is the z coordinate of the atom where the function is

centered. Finally, for the purpose of having a pre-chosen

minimum energy structure in the field-free case, we include

an elastic term in the potential for nuclear motion, which

contains 2nd and 4th order terms in nearest- and next-

nearest-neighbor changes in the interatomic distance.

In total, our model is very similar to a standard semi-

empirical electronic structure method, except that we do

not attempt to interpret the results as being those of specific

systems. In an earlier work [15], we used this model for

both long finite chains and infinite periodic systems. We

were thereby able to demonstrate that the ‘missing integer’,

or branch, in the infinite chain calculations exactly repli-

cated the effect of charge localization in the terminal

regions of the corresponding finite system. Although the

parameters here are somewhat different (see below), the

results corroborate our previous finding.

4.3 Structural response to electrostatic field

for model systems

Since the relationship between the missing integer/branch

for the infinite periodic system and the terminal charges of

the corresponding finite system is well established, it is

useful here to concentrate on the former: the reason is

simply that the calculations are many orders of magnitude

faster for the infinite periodic system. In Fig. 3, we show

the variation in the structure as a function of the external

electrostatic field. Three different sets of results are dis-

played; they have been obtained by choosing three differ-

ent values of the missing integer, ~n: Given the relationship

between ~n and the terminal charges of the long finite chain,

one of the three different cases corresponds to having a

total charge at the terminations equal to ±Q, which is the

smallest possible value. For the two other cases, Q is

changed from that value by ±2. Figure 3 demonstrates

accordingly that the field-dependent structure for the cen-

tral region of the finite chain depends on the terminations.

In particular, the converse piezoelectric effect, which

describes how the spatial extension of the macroscopic

material varies with the field, clearly depends on the ter-

minations. The dependence of the structural response to the

electric field on ~n depends on the elastic properties of the

system. Our calculations were performed on a model with

parameters that yield a significant, though not dramatic,

dependence on ~n: By varying parameter values, both much

stronger and much weaker dependencies can be obtained.

Further information on the properties of the system at

hand can be found in Fig. 4. The number of electrons on

the A atom, NA, depends only weakly on E when the

structure is not relaxed (top left hand panel; note vertical

scale). Moreover, in the same panel, we find that NA is

independent of ~n: The situation changes when the structure

is allowed to relax (top right hand panel). Then, there is a

much stronger dependence of NA on E, and, most impor-

tantly, NA depends on ~n: It turns out that the latter effect is

solely due to the dependence of the lattice constant a on ~n:

keeping a fixed removes the dependence of all properties

on ~n:

As also seen in Fig. 4, similar results are found for �l: In

order to improve the comparison between the results for

different values of ~n; we have modified the dipole moment

per unit (as well as the contribution due to the current term

to be discussed below) for a given ~n by an integer times

the field-free lattice constant. Note that for a given ~n;
�l depends much more strongly on E when the structure is

allowed to relax than it does without relaxation.

Finally, it is interesting to decompose the dipole

moment per unit into the charge and current components

shown in the 3rd and 4th rows of Fig. 4. For the present

model, the current contribution is the one that shows the

strongest dependence on E and on ~n: It follows from Eq. 40

that the major part of the finite chain (hyper)polarizabilities

arises from the terminations. Since the unit cells of the

central region remain neutral, the variation in the charge

contribution due to the field results solely from a redistri-

bution of the charge within the individual unit cells. On the

other hand, the variation in the current contribution comes

Fig. 3 Optimized values of the lattice constant (lower part), a, and

bond-length alternation parameter (upper part), u0, for the infinite

periodic chain as a function of the field, E. The different symbols mark

results for different values of the missing integer, ~n:
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from a charge transfer from one end to the other, whose

magnitude is independent of the size of the system.

5 Determination of piezoelectric and vibrational linear/

non-linear optical properties from nuclear response

As implied in Sect. 4.3, the results shown in Figs. 3 and 4

can be used to determine piezoelectric coefficients and the

contribution of nuclear relaxation to (hyper)polarizabilities.

We shall here discuss these issues a little further.

5.1 Piezoelectricity

The results of Fig. 3 give information on the piezoelectric

parameters of the system at hand. Piezoelectricity

originates from a coupling between mechanical and electric

properties. One may study different piezoelectric effects

(see e.g., [24]) but here we will concentrate on the converse

piezoelectric effect, i.e., the production of stress or strain

when an electrostatic field is applied.

In our case, where the field as well as the chain are along

the z direction, the corresponding converse piezoelectric

coefficient dzz is defined through

DL

L0

¼ dzzE: ð52Þ

Here, L0 is the total zero-field length of the macroscopic

sample and DL is its change in length due to the applied

electrostatic field. We split the total length of the sample,

L, into a sum of contributions from the three regions of

Fig. 1a, b or c each with its own converse piezoelectric

coefficient,

Fig. 4 Various properties of the

infinite periodic chain as a

function of the field,

E. Different symbols mark

results for different values of the

missing integer, ~n: The upper
panels show the Mulliken gross

population on one of the two

atoms of the unit cell. The

second row shows the dipole

moment per unit; it is split into a

charge contribution term (third
row) and a current contribution

(fourth row). The left hand
panels show the results without

structure relaxation (i.e., for the

optimized structure in the field-

free case), whereas the results in

the right hand column include

structure relaxation. In order to

make the comparison more

clear, the results of the 2nd and

4th row have been modified by

an appropriate integer times the

field-free lattice constant.

Notice the different scales for

the ordinate
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L ¼ L0 þ DL

¼ LR þ LL þ NC � a
¼ LR0ð1þ dzzREÞ þ LL0ð1þ dzzLEÞ þ NCa0ð1þ dzzCEÞ:

ð53Þ

Here, dzzC is the slope of a as a function of E for E? 0. The

results of Fig. 3 illustrate how this quantity can be

extracted from nuclear response calculations.

Equation 53 can alternatively be written as

L ¼ L0ð1þ dzzCEÞ þ LR0ðdzzR � dzzCÞE
þ LL0ðdzzL � dzzCÞE: ð54Þ

Thus, in order to determine experimentally the converse

piezoelectric coefficient for the bulk region, one should

study different samples that differ in length but have

exactly the same terminations. Plotting L as a function of

L0 for a given field strength will result in a straight line

whose slope is 1 ? dzzC E. Our finding for the infinite,

periodic system that a depends on the missing integer

shows that, although this slope is a purely bulk property, it

depends on the missing integer. That is to say, it depends

on the charge accumulated at the surfaces. Changing the

terminations will, in general, lead to a straight line with a

different slope.

5.2 Vibrational linear and non-linear optical properties

In this sub-section, we explore the feasibility of calculating

vibrational static (hyper)polarizabilities as well as dynamic

non-linear optical properties by means of the finite field

nuclear relaxation (FF-NR) procedure [25]. For static

(hyper)polarizabilities, we begin with the usual expansion

of the dipole moment per unit as a power series in the

applied electrostatic field

�lðEÞ ¼ �l0 þ aE þ bE2 þ cE3 þ � � � : ð55Þ

In Eq. 55 �l0 corresponds to the permanent dipole moment

per unit, a to the static polarizability per unit, and b; c; � � �
to the 1st, 2nd, � � � static hyperpolarizability per unit. These

properties may be determined by calculating �lðEÞ for

several different values of E and subsequently fitting the

results to a polynomial of varying length. Although more

sophisticated procedures could be applied, the fitting in this

initial exploratory study is done by means of least squares.

In addition, we choose to use only those field values for

which

jEj 
maxjEj: ð56Þ

It is important to note that the geometry has not yet been

specified. Two obvious possibilities are the field-free

geometry in all cases or the fully relaxed geometry at

each field. The former choice gives the static electronic

(hyper)polarizabilities, whereas the difference between the

two yields [25] the FF-NR approximation for the static

vibrational (hyper)polarizabilities. This approximation

accounts for the zeroth-order double harmonic (electric

and mechanical) contributions plus the leading perturbation

theory corrections [26].

The results of our fits are displayed in Fig. 5. Only one

value of the missing integer is utilized, but that is sufficient

for current purposes. The quantities of interest, as indicated

above, are the differences between the values in the right

hand panels (relaxed geometry) and those in the corre-

sponding left hand panels (field-free geometry). In order to

have a well-defined vibrational (hyper)polarizability, this

difference must be constant (or nearly constant) over a

range of maximum fields. The figure shows, as expected,

that including fields that are too large (i.e., choosing too

large a value for maxjEj), leads to unstable results. On the

other hand, maxjEj should also not be too small, especially

if the second hyperpolarizability is desired. In most

instances, it seems that our goal has been fairly well

achieved. The worst case, perhaps, is the second hyper-

polarizability of the relaxed structure. Even then, however,

there is a reasonable range of maximum fields over which

the third-order fit gives a nearly constant value. An

improved result would most likely be obtained with the use

of a different fitting procedure. However, that is beyond the

scope of the present work.

Except for �l0 the vibrational contribution to the property

value is much larger in magnitude than the electronic

contribution in the current model. This is a consequence of

the fact that �l depends much more strongly on E when the

structure is relaxed as we have seen in Sect. 4.3 The fact

that �l0 is unchanged by nuclear relaxation is as it should be

since the only vibrational contribution to the permanent

dipole moment is due to zero-point motions. The latter is a

separate, normally small, effect that is also not included in

any of the FF-NR vibrational (hyper)polarizabilities.

The above treatment can be extended to obtain dynamic

vibrational hyperpolarizabilities in the so-called infinite

optical frequency approximation [25], which applies when

the frequency of the incident light wave, m, is such that the

mvib�m for all fundamental vibrational frequencies, mvib.

For this purpose, a ‘pump’ field is applied to define the

structure of the system and, at this fixed structure, a sep-

arate set of ‘probe’ fields is utilized to obtain the electronic

linear polarizability and first hyperpolarizability per unit

from the expansion in Eq. 55. In Fig. 6, we show how these

properties vary for a set of different structures generated by

the ‘pump’ field given on the horizontal axis. These results

were obtained with a maximum ‘probe’ field of magnitude

0.0025 and different power series fits. Again, the desired

quantities are the differences between property values at

the zero-field geometry (see relevant left hand panels of
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Fig. 5) and at the geometry defined by the ‘pump’ field.

Expanding the difference in a as a function of ‘pump’ field

(cf. Eq. 55) yields the vibrational dc-Pockels (dc-P) b as

the linear term and the vibrational electro-optic Kerr effect

(EOKE) c as the quadratic term; the analogous expansion

of b gives the vibrational contribution to dc-second har-

monic generation (dc-SHG) as the linear term. The first-

order and second-order (for a) approximations obtained by

fitting the property data are also shown in Fig. 6. Although

the fitting can be improved, one can judge from this figure

the viability of the FF-NR method for determining the

zero-field derivatives that yield the vibrational dc-P,

EOKE, and dc-SHG non-linear optical properties.

As far as we know, there are no calculations in the

literature for infinite periodic structures that utilize the

methodology just presented and very few, by any means,

for the vibrational properties (other than static polariz-

ability) studied here. Considering the large magnitude that

may often occur for the vibrational, as opposed to elec-

tronic, (hyper)polarizabilities this nuclear relaxation

methodology deserves further exploration and application.

6 Discussion and conclusions

In this contribution, we have focused on an apparently

trivial issue: how to calculate the dipole moment per unit

for a regular quasilinear system that is so large that it is

most conveniently treated as being infinite and periodic.

Only during the past 1–2 decades have satisfactory

approaches been suggested for calculating �lz: Surprisingly,

in the MTP approach, no mathematical derivation has

previously been given although, as we show here, it is

indeed possible to do so. From this derivation, one can

understand the consequence of limiting the number of

k points in any practical calculation. Moreover, it leads

Fig. 5 The various coefficients

in the expansion of Eq. 55 as a

function of the maximum

absolute value of the field used

in the fit. The solid, dashed,

dash-dotted, dotted, and dash-
dot-dot-dotted curves represent

fits with a 3rd, 4th, 5th, 6th, and

7th order polynomial,

respectively, and the structure

has been fixed at that of the

field-free case in the left panels,

whereas it was relaxed in the

right panels
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directly to a treatment of electron correlation from a multi-

determinant wavefunction point of view, which has not

heretofore been available. We also suggest that electron

correlation can most readily be incorporated within the

VPA by combining two procedures that are already avail-

able, namely time-dependent MP2 and ‘local’ MP2 for

periodic systems.

It is interesting that, upon substitution at the termina-

tions, �lz for the large, but finite, system can vary by only an

integer times the lattice constant. There is a similar con-

tribution to the calculated dipole moment of an infinite

periodic system, which arises because of an indeterminacy

in a phase angle (known as the branch-dependence). We

have confirmed in model calculations that the two cases are

completely equivalent. This implies that, independent of

the size of the large finite system, the terminations make a

finite contribution to a number of experimental observ-

ables. They also affect the value of the field-dependent

bulk lattice constant which, in turn, will induce changes in

other properties. Through Zener tunneling, this effect will

also depend on the size of the finite system even if it is so

large that it can be considered above the thermodynamic

limit. Zener tunneling takes place when the field strength is

so large that it is energetically advantageous for electron(s)

to be transferred from one end of the system to the other.

For systems of different lengths but exposed to the same

field strength, Zener tunneling may occur for longer chains

but not for shorter ones. This transfer of charge will cause

the ‘missing integer’ to change in value (even though self-

consistent field calculations can become problematic [27].

It is non-trivial to set up and solve the VPA equation

[8, 9] for the field-dependent geometrical structure of the

infinite periodic system even in the independent particle

case. In recent years, however, we have been able to

develop an efficient and accurate method for this purpose

[11, 12, 14, 16]. Using that method for model systems, we

have found structural responses and thereby obtained the

converse piezoelectric coefficient. This bulk property was

shown to depend upon the missing integer and an experi-

mental procedure was outlined for determining, in princi-

ple, the effect of the terminations.

We have also demonstrated how the structural response,

in conjunction with the FF-NR procedure, can be utilized

to obtain static vibrational (hyper)polarizabilities as well as

several dynamic vibrational non-linear optical properties.

The potential significance of these properties has been

indicated and, in many instances, this is the first time a

practical computational method has been demonstrated for

a periodic system.

In principle, it is possible to generalize the treatment

presented here to higher dimensions, although additional

complications may occur. Most notably, surface recon-

structions can lead to surface unit cells that are larger than

those in the bulk. As a result, there may be additional

contributions to �l that cannot be treated directly within a

periodic system approach without having to use a larger

unit cell. This situation is, however, beyond the scope of

the present contribution.

Finally, for the sake of completeness, we add that the

approach presented here, and applied for a simple model, is

currently being implemented in ab initio programs. A

preliminary discussion of this work has been presented

earlier [16], and in the future, we hope to present ab initio

results on the responses of real systems to electrostatic

fields.
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Zicovich-Wilson C, Schütz M (2005) J Chem Phys 122:094113

24. Boonchun A, Lambrecht WRL (2010) Phys Rev B 81:235214

25. Bishop DM, Hassan M, Kirtman B (1995) J Chem Phys 103:4157

26. Bishop DM, Kirtman B (1992) J Chem Phys 97:5255

27. Springborg M Unpublished results

700 Theor Chem Acc (2011) 130:687–700

123


	On the dipolar electric field response of large systems
	Abstract
	Introduction
	Long finite chain
	Infinite periodic chain
	MTP expressions for independent particles
	Wavefunction treatment of electron correlation

	Branch dependence and structural response to an electrostatic field
	Formalism
	Model
	Structural response to electrostatic field for model systems

	Determination of piezoelectric and vibrational linear/non-linear optical properties from nuclear response
	Piezoelectricity
	Vibrational linear and non-linear optical properties

	Discussion and conclusions
	Acknowledgments
	References


